Pursuing the unlimited energy dream – history of the Integral Fast Reactor


Len Koch, whose participation in nuclear energy research started in the 1940s, wrote the below open letter to colleagues who are striving to restore interest in the progress that they made in research and development of the Integral Fast Reactor during the period from 1954-1994 the year that President Clinton and Hazel O’Leary, his Secretary of Energy zeroed out all nuclear energy research funding and killed the IFR program.


I continue to be confused and concerned about the apparent “IFR Strategy“ to minimize (or ignore) the established history of this concept. It was conceived in the 1940s by Enrico Fermi and his colleagues. I learned the details in late 1948 when Dr. Fermi presented a Seminar at which he described his vision of nuclear power for the future, with the potential of providing a new energy source for the foreseeable future.

He acknowledged that it had already been demonstrated that the energy contained in the fissionable rare U-235 isotope could be extracted, but its scarcity essentially eliminated it as a long term energy source. He then described his vision of nuclear power which involved extracting the energy from the abundant “ non-fissionable” U-238 isotope.(the 99.3% of natural uranium).

He discussed what needed to be done to establish the feasibility of this concept. He explained that a two step process was required because “non-fissionable U-238” would first be converted to “fissionable Pu-239” and then the Pu would be fissioned. He had concluded that this could be achieved in the fast reactor they had conceived, and in fact such a reactor could produce more plutonium than it would consume. IT COULD “BREED” PLUTONIUM! Fermi cautioned that this concept would also require that it would be necessary to recycle this fuel on a continuing basis to consume the U-238, that it was not a “once thru” option.

He then described an experiment being developed to demonstrate the feasibility of this breeding concept. Needless to say, I was enthralled to hear his description of the experiment I WAS WORKING ON! It became known as the Experimental Breeder Reactor (later it became EBR-I to differentiate it from EBR-II). This reactor, fueled with U-235 as a substitute for Plutnium (because of availability of technology and material), established the feasibility of the “fast breeder concept”.

Even before the successful operation of EBR-I was accomplished, ANL began planning the development and demonstration of the second requirement of the Fermi concept, fuel recycle. It grew as a “multiple discipline” effort coordinated and directed by the Lab Director, Walter H. Zinn, (who had also directed the EBR-I program). The EBR-I had not addressed the fuel recycle requirement and it became the driving force of this second development effort. Power reactor fuel technology was still very much limited to uranium. The Chemical Engineering Division was developing “pyroprocessing”as a possible technology for fast power reactors. The Metallurgy Division was developing fuel fabrication processes and the Reactor Engineering Division was developing Power Reactor concepts incorporating “power reactor features”(as contrasted to the EBR-I concept which resembled a research reactor).

The EBR-II concept grew out of this multi discipline effort. It turned out to be a very bold, radical approach to Fermi’s concept, but it addressed many problems that persisted with sodium systems, The EBR-II concept was built around the fuel cycle which had been selected. This too required initial work with a Uranium alloy fuel AS PRODUCED BY THE FUEL REPROCESSING CYCLE! The Announcement of the Authorization of EBR-II states (March 3, 1958): “The EBR-2 is an integral nuclear power plant. It includes a complete fuel processing and fabrication facility in addition to the reactor plant, heat transfer systems and steam-electric plant”.

Others, notably France and Great Britain, quickly adopted the basic EBR-II reactor system concept of a submerged (in sodium) reactor and primary system. Phenix in France and PFR in Great Britain. Neither adopted the fuel recycle concept, but received much operational experience. Phenix operated for more than 30 years. Both countries (as well as others) have accumulated much fast reactor experience.

EBR-II began “approach to power” operation in 1964” and operated for about 30 years as an experimental nuclear power plant connected to the grid. It operated on recycled fuel (about 5 complete core loadings) until prohibited by Governmental edict, prohibiting the use of recycled fuel in power reactors. After the prohibition of fuel recycle,“simulated recycled fuel” was manufactured commercially and used, but not recycled. NOTE: in my opinion, this was one of many stupid mistakes that were made in the life of the United States fast reactor development program. We owe Enrico Fermi and his colleagues our deepest apologies!

A few thoughts about the future: I recently read that the DOE has about 700,000 Tons of depleted uranium in storage. I presume that a large part of that material is stored in the typical containers that contain about 14 tons each. In an article I wrote about 10 years ago, I included a photo of a worker checking some of the cylinders containing depleted uranium. A printed note on the photo (which I keep on my desk to retain my perspective ) “Each 14 ton cylinder contains the energy equivalent of about 100 MILLION BARRELS OF OIL”. At 14 tons each, the DOE has about 50,000 of these cylinders in storage, each containing the energy equivalent of 100 million barrels of oil! The rest of the world has more!

Dr. Fermi was right! We have a tremendous source of energy! It is essentially unlimited. And it can be extracted without “burning something and producing CO2”. Will it be used? Certainly! When will it be used? When it is properly evaluated. Probably by others that really need it (everyone now knows what is required).

I believe that China and India may be the most motivated at this time; China because of the need to support its growth in energy demand and India because of growth and the desire to utilize their tremendous inventory of thorium which can substitute for U-238. It is noted that both countries have negotiated with Russia about providing 800 megawatt fast power reactors to them.

I am compelled to raise this discussion because this is not a NEW subject. Fermi and the other PIONEERS in the nuclear power field conceived this real new source of energy more than 60 years ago. It is not new! Much has been learned (but not as much as should have been). This concept was not developed from 1984 to 1994, It was developed from about 1954 to 1994 with much thought preceding it. EBR-II IS THE ONLY “INTEGRAL REACTOR” ever built and operated. It was shutdown, by edict too, in 1994.

I believe that we are performing a disservice to the concept by ignoring the early work. This is not a new, untried concept. It provides another power option with many new characteristics that could be preferable to the existing power plants. If fast reactors are thought to be new and untried they may not be given appropriate consideration. Therefore, I believe that proper recognition of the maturity of this concept will actually add substance to its acceptability.

Leonard Koch

I remain convinced that nuclear fission energy is a gift to mankind from our creator (or nature if you prefer to think of the world as having emerged from a series of random events) that we have uncovered just in the nick of time. There has been a lot of resistance to allowing its development because it is perhaps the most disruptive physical phenomenon ever discovered – even more important than semi-conductors.

Its use threatens the profitability (not the existence) of the world’s multinational fossil fuel industry because most of the profits in that industry come during times when there is a perception that energy is scarce. The resulting bidding for a necessary ingredient of our developed society leads to some incredibly large flows of financial resources to some rather unsavory individuals, companies and countries.

That cash flow slows dramatically when there is more energy supply than energy demand. History is replete with examples of the ups and downs in the fossil fuel industry and the relationship between perceptions of supply and reality of demand.

Integral Fast Reactors, molten salt reactors using thorium, light water breeder reactors using U-233/Th-232, and graphite moderated gas cooled reactors using a mixture of Pu, U, and Th isotopes all provide alternative paths to a future where there is no limit to the amount of energy and power that can be supplied to as many people as there are on the planet for as long as those people want the power.

There is no longer any doubt in my mind that much of the power and temporary success of the antinuclear industry has been enabled by injections of resources (both financial and political) from people with strong interest in keeping human society addicted to hydrocarbon heat.

Rod Adams